The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking.
نویسندگان
چکیده
Studies addressing behavioral functions of dopamine (DA) in the nucleus accumbens septi (NAS) are reviewed. A role of NAS DA in reward has long been suggested. However, some investigators have questioned the role of NAS DA in rewarding effects because of its role in aversive contexts. As findings supporting the role of NAS DA in mediating aversively motivated behaviors accumulate, it is necessary to accommodate such data for understanding the role of NAS DA in behavior. The aim of the present paper is to provide a unifying interpretation that can account for the functions of NAS DA in a variety of behavioral contexts: (1) its role in appetitive behavioral arousal, (2) its role as a facilitator as well as an inducer of reward processes, and (3) its presently undefined role in aversive contexts. The present analysis suggests that NAS DA plays an important role in sensorimotor integrations that facilitate flexible approach responses. Flexible approach responses are contrasted with fixed instrumental approach responses (habits), which may involve the nigro-striatal DA system more than the meso-accumbens DA system. Functional properties of NAS DA transmission are considered in two stages: unconditioned behavioral invigoration effects and incentive learning effects. (1) When organisms are presented with salient stimuli (e.g., novel stimuli and incentive stimuli), NAS DA is released and invigorates flexible approach responses (invigoration effects). (2) When proximal exteroceptive receptors are stimulated by unconditioned stimuli, NAS DA is released and enables stimulus representations to acquire incentive properties within specific environmental context. It is important to make a distinction that NAS DA is a critical component for the conditional formation of incentive representations but not the retrieval of incentive stimuli or behavioral expressions based on over-learned incentive responses (i.e., habits). Nor is NAS DA essential for the cognitive perception of environmental stimuli. Therefore, even without normal NAS DA transmission, the habit response system still allows animals to perform instrumental responses given that the tasks take place in fixed environment. Such a role of NAS DA as an incentive-property constructor is not limited to appetitive contexts but also aversive contexts. This dual action of NAS DA in invigoration and incentive learning may explain the rewarding effects of NAS DA as well as other effects of NAS DA in a variety of contexts including avoidance and unconditioned/conditioned increases in open-field locomotor activity. Particularly, the present hypothesis offers the following interpretation for the finding that both conditioned and unconditioned aversive stimuli stimulate DA release in the NAS: NAS DA invigorates approach responses toward 'safety'. Moreover, NAS DA modulates incentive properties of the environment so that organisms emit approach responses toward 'safety' (i.e., avoidance responses) when animals later encounter similar environmental contexts. There may be no obligatory relationship between NAS DA release and positive subjective effects, even though these systems probably interact with other brain systems which can mediate such effects. The present conceptual framework may be valuable in understanding the dynamic interplay of NAS DA neurochemistry and behavior, both normal and pathophysiological.
منابع مشابه
P139: Role of Dopamine Receptor D3 in Depression and Anxiety
Dopamine (DA) is one of the main catecholamines in the brain and is crucial for movement coordination, endocrine function, reward, mood, memory and emotions. The dopaminergic system is the primary therapeutic target in the treatment of Parkinson’s disease (PD), drug addiction and schizophrenia. Notwithstanding, dysfunction of central dopaminergic neurotransmission has also been associated to de...
متن کاملEndocannabinoids Shape Accumbal Encoding of Cue-Motivated Behavior via CB1 Receptor Activation in the Ventral Tegmentum
Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high-frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also results in the release of endocannabinoids from dopamine cell bodies. In this context, endocannabin...
متن کاملDopamine invigorates reward seeking by promoting cue-evoked excitation in the nucleus accumbens.
Approach to reward is a fundamental adaptive behavior, disruption of which is a core symptom of addiction and depression. Nucleus accumbens (NAc) dopamine is required for reward-predictive cues to activate vigorous reward seeking, but the underlying neural mechanism is unknown. Reward-predictive cues elicit both dopamine release in the NAc and excitations and inhibitions in NAc neurons. However...
متن کاملLocal hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell
Hypocretins (hcrt), also known as orexins, play a critical role in reward-seeking behavior for natural rewards and drugs of abuse. The mesolimbic dopamine pathway that projects from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is critically involved in the neural mechanisms underlying reward-seeking and motivation. Hcrt immunopositive fibers densely project to the shell of th...
متن کاملThe flexible approach hypothesis: unification of effort and cue-responding hypotheses for the role of nucleus accumbens dopamine in the activation of reward-seeking behavior.
Dopamine released in the nucleus accumbens is thought to contribute to the decision to exert effort to seek reward. This hypothesis is supported by findings that performance of tasks requiring higher levels of effort is more susceptible to disruption by manipulations that reduce accumbens dopamine function than tasks that require less effort. However, performance of some low-effort cue-respondi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research. Brain research reviews
دوره 31 1 شماره
صفحات -
تاریخ انتشار 1999